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Abstract 1 

As the scale of biological data generation has increased, the bottleneck of research has shifted from data 2 

generation to analysis. Researchers commonly need to build computational workflows that include 3 

multiple analytic tools and require incremental development as experimental insights demand tool and 4 

parameter modifications. These workflows can produce hundreds to thousands of intermediate files and 5 

results that must be integrated for biological insight. Data-centric workflow systems that internally 6 

manage computational resources, software, and conditional execution of analysis steps are reshaping the 7 

landscape of biological data analysis, and empowering researchers to conduct reproducible analyses at 8 

scale. Adoption of these tools can facilitate and expedite robust data analysis, but knowledge of these 9 

techniques is still lacking. Here, we provide a series of practices and strategies for leveraging workflow 10 

systems with structured project, data, and resource management to streamline large-scale biological 11 

analysis. 12 

 13 

Author Summary 14 

We present a guide for workflow-enabled biological sequence data analysis, developed through our own 15 

teaching, training and analysis projects. We recognize that this is based on our own use cases and 16 

experiences, but we hope that our guide will contribute to a larger discussion within the open source and 17 

open science communities and lead to more comprehensive resources. Our main goal is to accelerate the 18 

research of scientists conducting sequence analyses by introducing them to organized workflow practices 19 

that not only benefit their own research but also facilitate open and reproducible science. 20 
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Introduction 21 

Biological research has become increasingly computational. In particular, genomics has experienced a 22 

deluge of high-throughput sequencing data that has already reshaped our understanding of the diversity 23 

and function of organisms and communities, building basic understanding from ecosystems to human 24 

health. The analysis workflows used to produce these insights often integrate hundreds of steps and 25 

involve a myriad of decisions ranging from small-scale tool and parameter choices to larger-scale design 26 

decisions around data processing and statistical analyses. Each step relies not just on analysis code written 27 

by the researcher, but on third-party software, its dependencies, and the compute infrastructure and 28 

operating system on which the code is executed. Historically, this has led to the patchwork availability of 29 

underlying code for analyses as well as a lack of interoperability of the resulting software and analysis 30 

pipelines across compute systems [1]. Combined with unmet training needs in biological data analysis, 31 

these conditions undermine the reuse of data and the reproducibility of biological research, vastly limiting 32 

the value of our generated data [2]. 33 

The biological research community is strongly committed to addressing these issues, recently formalizing 34 

the FAIR practices: the idea that all life sciences research (including data and analysis workflows) should 35 

be Findable, Accessible, Interoperable, and Reusable [3]. For computational analyses, these ideals are 36 

readily achievable with current technology, but implementing them in practice has proven difficult, 37 

particularly for biologists with little training in computing [3]. However, the recent maturation of data-38 

centric workflow systems designed to automate and facilitate computational workflows is expanding our 39 

capacity to conduct end-to-end FAIR analyses [5]. These workflow systems are designed to handle some 40 

aspects of computational workflows internally: namely, the interactions with software and computing 41 

infrastructure, and the ordered execution of each step of an analysis. By reducing the manual input and 42 

monitoring required at each analysis juncture, these integrated systems ensure that analyses are repeatable 43 

and can be executed at much larger scales. In concert, the standardized information and syntax required 44 
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for rule-based workflow specification makes code inherently modular and more easily transferable 45 

between projects [5,6]. For these reasons, workflow systems are rapidly becoming the workhorses of 46 

modern bioinformatics. 47 

Adopting workflow systems requires some level of up-front investment, first to understand the structure 48 

of the system, and then to learn the workflow-specific syntax. These challenges can preclude adoption, 49 

particularly for researchers without significant computational experience [4]. In our experiences with both 50 

research and training, these initial learning costs are similar to those required for learning more traditional 51 

analysis strategies, but then provide a myriad of additional benefits that both facilitate and accelerate 52 

research. Furthermore, online communities for sharing reusable workflow code have proliferated, 53 

meaning the initial cost of encoding a workflow in a system is mitigated via use and re-use of common 54 

steps, leading to faster time-to-insight [5,7]. 55 

Building upon the rich literature of “best” and “good enough” practices for computational biology 56 

[8,9,10], we present a series of strategies and practices for adopting workflow systems to streamline data-57 

intensive biology research. This manuscript is designed to help guide biologists towards project, data, and 58 

resource management strategies that facilitate and expedite reproducible data analysis in their research. 59 

We present these strategies in the context of our own experiences working with high-throughput 60 

sequencing data, but many are broadly applicable to biologists working beyond this field. 61 

Workflows facilitate data-intensive biology 62 

Data-intensive biology typically requires that researchers execute computational workflows using 63 

multiple analytic tools and apply them to many experimental samples in a systematic manner. These 64 

workflows commonly produce hundreds to thousands of intermediate files and require incremental 65 

changes as experimental insights demand tool and parameter modifications. Many intermediate steps are 66 

central to the biological analysis, but others, such as converting between file formats, are rote 67 
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computational tasks required to passage data from one tool to the next. Some of these steps can fail 68 

silently, producing incomplete intermediate files that imperceptively invalidate downstream results and 69 

biological inferences. Properly managing and executing all of these steps is vital, but can be both time-70 

consuming and error-prone, even when automated with scripting languages such as bash. 71 

The emergence and maturation of workflow systems designed with bioinformatic challenges in mind has 72 

revolutionized computing in data intensive biology [11]. Workflow systems contain powerful 73 

infrastructure for workflow management that can coordinate runtime behavior, self-monitor progress and 74 

resource usage, and compile reports documenting the results of a workflow (Figure 1). These features 75 

ensure that the steps for data analysis are minimally documented and repeatable from start to finish. When 76 

paired with proper software management, fully-contained workflows are scalable, robust to software 77 

updates, and executable across platforms, meaning they will likely still execute the same set of commands 78 

with little investment by the user after weeks, months, or years. 79 

 80 

Figure 1: Workflow Systems: Bioinformatic workflow systems have built-in functionality that facilitates 81 

and simplifies running analysis pipelines. A. Samples: Workflow systems enable you to use the same code 82 

to run each step on each sample. Samples can be easily added if the analysis expands. B. Software 83 

Management: Integration with software management tools (e.g. conda, singularity, docker) can automate 84 

software installation for each step. C. Branching, D. Parallelization, and E. Ordering: Workflow 85 

systems handle conditional execution, ensuring that tasks are executed in the correct order for each 86 

sample file, including executing independent steps in parallel if possible given the resources provided. F. 87 

Standard Steps: Many steps are now considered “standard” (e.g. quality control). Workflow languages 88 

keep all information for a step together and can be written to enable you to remix and reuse individual 89 

steps across pipelines. G. Rerun as necessary: Workflow systems keep track of which steps executed 90 

properly and on which samples, and allow you to rerun failed steps (or additional steps) rather than re-91 
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executing the entire workflow. H. Reporting: Workflow languages enable comprehensive reporting on 92 

workflow execution and resource utilization by each tool. I. Portability: Analyses written in workflow 93 

languages (with integrated software management) can be run across computing systems without changes 94 

to code. 95 

To properly direct an analysis, workflow systems need to encode information about the relationships 96 

between every workflow step. In practice, this means that each analysis step must specify the input (or 97 

types of inputs) needed for that step, and the output (or types of outputs) being produced. This structure 98 

provides several additional benefits. First, workflows become minimally self-documented, as the directed 99 

graph produced by workflow systems can be exported and visualized, producing a graphical 100 

representation of the relationships between all steps in a pipeline (see Figure 5). Next, workflows are 101 

more likely to be fully enclosed without undocumented steps that are executed by hand, meaning analyses 102 

are more likely to be reproducible. Finally, each step becomes a self-contained unit that can be used and 103 

re-used across multiple analysis workflows, so scientists can spend less time implementing standard steps, 104 

and more time on their specific research questions. In sum, the internal scaffolding provided by workflow 105 

systems helps build analyses that are generally better documented, repeatable, transferable, and scalable. 106 

Getting started with workflows 107 

The workflow system you choose will be largely dependent on your analysis needs. Here, we draw a 108 

distinction between two types of workflows: “research” workflows that are under iterative development to 109 

answer novel scientific questions, and “production” workflows, which have reached maturity and are 110 

primarily used to run a standard analysis on new samples. In particular, research workflows require 111 

flexibility and assessment at every step: outliers and edge cases may reveal interesting biological 112 

differences, rather than sample processing or technical errors. Many workflow systems can be used for 113 

either type, but we note cases where their properties facilitate one of these types over the other. 114 
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Using workflows without learning management systems While the benefits of encoding a workflow in 115 

a workflow system are immense, the learning curve associated with implementing complete workflows in 116 

a new syntax can be daunting. It is possible to obtain the benefits of workflow systems without learning a 117 

workflow system. Websites like Galaxy, Cavatica, and EMBL-EBI MGnify offer online portals in which 118 

users build workflows around publicly-available or user-uploaded data [12,13,14]. On the command line, 119 

many research groups have used workflow systems to build user-friendly pipelines that do not require 120 

learning or working with the underlying workflow software. These tools are specified in an underlying 121 

workflow language, but are packaged in a user-friendly command-line script that coordinates and 122 

executes the workflow. Rather than writing each workflow step, the user can specify data and parameters 123 

in a configuration file to customize the run. Some examples include the nf-core RNA-seq pipeline [1,15], 124 

the ATLAS metagenome assembly and binning pipeline [16,17], the Sunbeam metagenome analysis 125 

pipeline [18,19], and two from our own lab, the dammit eukaryotic transcriptome annotation pipeline [20] 126 

and the elvers de novo transcriptome pipeline [21]. These tools allow users to take advantage of the 127 

benefits of workflow software without needing to invest in curating and writing their own pipeline. The 128 

majority of these workflows are production-level workflows designed to execute a series of standard 129 

steps, but many provide varying degrees of customizability ranging from tool choice to parameter 130 

specification. 131 

Choosing a workflow system If your use case extends beyond these tools, there are several scriptable 132 

workflow systems that offer comparable benefits for carrying out your own data-intensive analyses. Each 133 

has it own strengths, meaning each workflow software will meet an individuals computing goals 134 

differently (see Table 1). Our lab has adopted Snakemake, in part due to its similarity and integration 135 

with Python, its flexibility for building and testing new analyses in different languages, and its intuitive 136 

integration with software management tools (described below)[22]. Snakemake and Nextflow are 137 

commonly used for devloping new research pipelines, where flexibility and iterative, branching 138 

development is a key feature [23]. Common Workflow Language (CWL) and Workflow Description 139 
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Language (WDL) are workflow specification formats that are more geared towards scalability, making 140 

them ideal for production-level pipelines with hundreds of thousands of samples [24]. WDL and CWL are 141 

commonly executed on platforms such as Terra [25] or Seven Bridges Platform [26]. Language-specific 142 

workflow systems, such as ROpenSci’s Drake [27], are limited in the scope of tasks they can execute, but 143 

are powerful within their language and easier to integrate for those comfortable with that language. 144 

Table 1: Four of the most widely used bioinformatics workflow systems (2020), with links to 145 

documentation, example workflows, and general tutorials. In many cases, there may be tutorials online 146 

that are tailored for use cases in your field. All of these systems can interact with tools or tasks written in 147 

other languages and can function across cloud computing systems and high-performance computing 148 

clusters. Some can also import full workflows from other specification languages.  149 

Workflow 

System Documentation Example Workflow Tutorial 

Snakemake snakemake.readthedocs.io https://github.com/snakemak

e-workflows/chipseq 
https://snakemake.readthedocs.io 

/en/stable/tutorial/tutorial.html 

Nextflow www.nextflow.io https://github.com/nf-

core/sarek 
https://www.nextflow.io/docs/ 

latest/getstarted.html 

Common 

workflow 

language 

www.commonwl.org https://github.com/EBI-

Metagenomics/pipeline-v5 
https://www.commonwl.org/ 

user_guide/02-1st-

example/index.html 

Workflow 

description 

language 

openwdl.org https://github.com/gatk-

workflows/gatk4-data-

processing 

https://support.terra.bio/hc/en-

us/articles/360037127992–1-howto-

Write-your-first-WDL-script-

running-GATK-HaplotypeCaller 

The best workflow system to choose may be the one with a strong and accessible local or online 150 

community in your field, somewhat independent of your computational needs. The availability of field-151 

specific data analysis code for reuse and modification can facilitate the adoption process, as can 152 

community support for new users. Fortunately, the standardized syntax required by workflow systems, 153 

combined with widespread adoption in the open science community, has resulted in a proliferation of 154 

open access workflow-system code for routine analysis steps [28,29]. At the same time, consensus 155 

approaches for data analysis are emerging, further encouraging reuse of existing code [30,31,32,33,34]. 156 
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The Getting started developing workflows section contains strategies for modifying and developing 157 

workflows for your own analyses. 158 

Wrangling Scientific Software 159 

Analysis workflows commonly rely on multiple software packages to generate final results. These tools 160 

are heterogeneous in nature: they are written by researchers working in different coding languages, with 161 

varied approaches to software design and optimization, and often for specific analysis goals. Each 162 

program has a number of other programs it depends upon to function (“dependencies”), and as software 163 

changes over time to meet research needs, the results may change, even when run with identical 164 

parameters. As a result, it is critical to take an organized approach to installing, managing, and keeping 165 

track of software and software versions. To meet this need, most workflow managers integrate with 166 

software management systems like conda, singularity, and docker [11,35,36]. 167 

Software management systems perform some combination of software installation, management, and 168 

packaging that alleviate problems that arise from dependencies and facilitate documentation of software 169 

versions. On many compute systems, system-wide software management is overseen by system 170 

administrators, who ensure commonly-used and requested software is installed into a “module” system 171 

available to all users. Unfortunately, this system does not lend itself well for exploring new workflows 172 

and software, as researchers do not have permission to install software themselves. The Conda package 173 

manager has emerged as a leading solution, largely because it handles both cluster permission and version 174 

conflict issues with a user-based software environment system, and features a straightforward “recipe” 175 

system which simplifies the process of making new software installable (Figure 2). Conda enables 176 

lightweight software installation and can be used with the same commands across platforms, but can still 177 

be impacted by differences in the host operating system. Alternatively, wrapping software environments 178 

in “containers” that capture and reproduce all other aspects of the runtime environment can enhance 179 
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reproducibility over time [3]. Container-based software installation via docker and singularity is common 180 

for production-level workflows. 181 

 182 

Figure 2: The conda package and environment manager simplifies software installation and 183 

management. A. Conda Recipe Repositories: Each program distributed via Conda has a “recipe” 184 

describing all software dependencies needed for installation using Conda (each of which must also be 185 

installable via Conda). Recipes are stored and managed in the cloud in separate “channels”, some of 186 

which specialize in particular fields or languages (e.g. the “bioconda” channel specializes in 187 

bioinformatic software, the “r” channel specializes in R language packages) [11]. B. Use Conda 188 

Environments to Avoid Installation Conflicts: Conda does not require root privileges for software 189 

installation, thus enabling use by researchers working on shared cluster systems. However, even user-190 

based software installation can encounter dependency conflicts. For example, you might need to use 191 

python2 to install and run a program (e.g. older scripts written by members of your lab), while also using 192 

snakemake to execute your workflows (requires python>=3.5). By installing each program into an 193 

isolated “environment” that contains only the software required to run that program, you can ensure all 194 

programs used throughout your analysis will run without issue. Using small, separate environments for 195 

your software and building many simple environments to accommodate different steps in your workflow 196 

also reduces the amount of time it takes conda to resolve dependency conflicts between different software 197 

tools (“solve” an environment). Conda virtual environments can be created and installed either on the 198 

command line, or via an environment YAML file, as shown. In this case, the environment file also 199 

specifies which Conda channels to search and download programs from. When specified in a YAML file, 200 

conda environments are easily transferable between computers and operating systems. Further, because 201 

the version of each package installed in an environment is recorded, workflow reproducibility is 202 

enhanced. Although portions of Conda may be superseded by alternative solutions [37], this model of 203 

software installation and management will likely persist. 204 
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Getting started with software management 205 

Using software without learning management systems While package managers and containers greatly 206 

increase reproducibility, there are a number of ways to test software before needing to worry about 207 

installation. Some software packages are available as web-based tools and through a series of data upload 208 

and parameter specifications, allow the user to interact with a tool that is running on a back-end server. 209 

Integrated development environments (IDE) like PyCharm and RStudio can manage software installation 210 

for language-specific tools, and can be very helpful when writing analysis code. These approaches are 211 

ideal for testing a tool to determine whether it produces useful output on your data before integration with 212 

your reproducible workflow. 213 

Integrating software management within workflows Workflow systems provide seamless integration 214 

with software management tools. Each workflow system requires different specification for initiation of 215 

software management, but typically requires about one additional line of code per step that requires the 216 

use of software. If the software management tool is installed locally, the workflow will automatically 217 

download and install the specified environment or container and use it for specified step. 218 

In our experience, the complete solution for using scientific software involves starting with a combination 219 

of interactive and exploratory analyses in IDEs and local conda installation to develop an analysis 220 

strategy and create an initial workflow. This is then followed by workflow-integrated software 221 

management via conda, singularity, or docker for executing the resulting workflow on many samples. 222 

Workflow-Based Project Management 223 

Project management, the strategies and decisions used to keep a project organized, documented, 224 

functional, and shareable, is foundational to any research program. Clear organization and management is 225 

a learned skill that takes time to implement. Workflow systems both simplify and improve computational 226 
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project management, but even workflows that are fully specified in workflow systems require additional 227 

investment to stay organized, documented, and backed up. 228 

Systematically document your workflows 229 

Pervasive documentation provides indispensable context for biological insights derived from an analysis, 230 

facilitates transparency in research, and increases reusability of the analysis code. Good documentation 231 

covers all aspects of a project, including file and results organization, clear and commented code, and 232 

accompanying explanatory documents for design decisions and metadata. Workflow systems facilitate 233 

building this documentation, as each analysis step (with chosen parameters) and the links between those 234 

steps are completely specified within the workflow syntax. This feature streamlines code documentation, 235 

particularly if you include as much of the analysis as possible within the automated workflow framework. 236 

Outside of the analysis itself, applying consistent organizational design can capitalize on the structure and 237 

automation provided by workflows to simplify the generation of quality documentation for all aspects of 238 

your project. Below, we discuss project management strategies for building reproducible workflow-239 

enabled biological analyses. 240 

Use consistent, self-documenting names 241 

Using consistent and descriptive identifiers for your files, scripts, variables, workflows, projects, and even 242 

manuscripts helps keep your projects organized and interpretable for yourself and collaborators. For 243 

workflow systems, this strategy can be implemented by tagging output files with a descriptive identifier 244 

for each analysis step, either in the filename or by placing output files within a descriptive output folder. 245 

For example, the file shown in Figure 3 has been preprocessed with a quality control trimming step. For 246 

large workflows, placing results from each step of your analysis in isolated, descriptive folders can be 247 

essential for keeping your project workspace clean and organized. 248 
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 249 

Figure 3: Consistent and informative file naming improves organization and interpretability. For 250 

ease of grouping and referring to input files, it is useful to keep unique sample identification in the 251 

filename, often with a metadata file explaining the meaning of each unique descriptor. For analysis 252 

scripts, it can help to implement a numbering scheme, where the name of first file in the analysis begins 253 

with “00”, the next with “01”, etc. For output files, it can help to add a short, unique identifier to output 254 

files processed with each analysis step. This particular file is a RAD sequencing fastq file of a fish species 255 

that has been preprocessed with a fastq quality trimming tool. 256 

Store workflow metadata with the workflow 257 

Developing biological analysis workflows can involve hundreds of small decisions: What parameters 258 

work best for each step? Why did you use a certain reference file for annotation as compared with other 259 

available files? How did you finally manage to get around the program or installation error? All of these 260 

pieces of information contextualize your results and may be helpful when sharing your findings. Keeping 261 

information about these decisions in an intuitive and easily accessible place helps you find it when you 262 

need it. To capitalize on the utility of version control systems described below, it is most useful to store 263 

this information in plain text files. Each main directory of a project should include notes on the data or 264 

scripts contained within, so that a collaborator could look into the directory and understand what to find 265 

there (especially since that “collaborator” is likely to be you, a few months from now!). Code itself can 266 

contain documentation - you can include comments with the reasoning behind algorithm choice or include 267 

a link to the seqanswers post that helped you decide how to shape your differential expression analysis. 268 

Larger pieces of information can be kept in “README” or notes documents kept alongside your code 269 

and other documents. For example, a GitHub repository documenting the reanalysis of the Marine 270 

Microbial Eukaryote Transcriptome Sequencing Project uses a README alongside the code to document 271 
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the workflow and digital object identifiers for data products [38,39]. While this particular strategy cannot 272 

be automated, it is critical for interpreting the final results of your workflow. 273 

Document data and analysis exploration using computational notebooks 274 

Computational notebooks allow users to combine narrative, code, and code output (e.g. visualizations) in 275 

a single location, enabling the user to conduct analysis and visually assess the results in a single file (see 276 

Figure 4). These notebooks allow for fully documented iterative analysis development, and are 277 

particularly useful for data exploration and developing visualizations prior to integration into a workflow 278 

or as a report generated by a workflow that can be shared with collaborators. 279 

 280 

Figure 4: Examples of computational notebooks. Computational notebooks allow the user to mix text, 281 

code, and results in one document. Panel A. shows an RMarkdown document viewed in the RStudio 282 

integrated development environment, while Panel B. shows a rendered HTML file produced by knitting 283 

the RMarkdown document [40]. Panel C. shows a Jupyter Notebook, where code, text, and results are 284 

rendered inline as each code chunk is executed [41]. The second grey chunk is a raw Markdown chunk 285 

with text that will be rendered inline when executed. Both notebooks generate a histogram of a metadata 286 

feature, number of generations, from a long-term evolution experiment with Escherichia coli [42]. 287 

Computational notebooks facilitate sharing by packaging narrative, code, and visualizations together. 288 

Computational notebooks can be further packaged with tools like Binder [43]. Binder builds an 289 

executable environment (capable of running RStudio and Jupyter notebooks) out of a GitHub repository 290 

using package management systems and docker to build reproducible and executable software 291 

environments as specified in the repository. Binders can be shared with collaborators (or students in a 292 

classroom setting), and analysis and visualization can be ephemerally reproduced or altered from the 293 

code provided in computational notebooks. 294 

 295 
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Visualize your workflow 296 

Visual representations can help illustrate the connections in a workflow and improve the readability and 297 

reproducibility of your project. At the highest level, flowcharts that detail relationships between steps of a 298 

workflow can help provide big-picture clarification, especially when the pipeline is complicated. For 299 

individual steps, a graphical representation of the output can show the status of the project or provide 300 

insight on additional analyses that should be added. For example, Figure 5 exhibits a modified 301 

Snakemake workflow visualization from an RNA-seq quantification pipeline [44]. 302 

 303 

Figure 5: A directed acyclic graph (DAG) that illustrates connections between all steps of a sequencing 304 

data analysis workflow. Each box represents a step in the workflow, while lines connect sequential steps. 305 

The DAG shown in this figure illustrates a real bioinformatics workflow for RNA-seq quantification was 306 

generated by modifying the default Snakemake workflow DAG. While the workflow is complex, it is 307 

coordinated by a workflow system that alleviates the need for a user to directly manage file 308 

interdependencies. 309 

Version control your project 310 

As your project develops, version control allows you to keep track of changes over time. You may 311 

already do this in some ways, perhaps with frequent hard drive backups or by manually saving different 312 

versions of the same file - e.g. by appending the date to a script name or appending “version_1” or 313 

“version_FINAL” to a manuscript draft. For computational workflows, using version control systems 314 

such as Git or Mercurial can be used to keep track of all changes over time, even across multiple systems, 315 

scripting languages, and project contributors (see Figure 6). If a key piece of a workflow inexplicably 316 

stops working, consistent version control can allow you to rewind in time and identify differences from 317 

when the pipeline worked to when it stopped working. Backing up your version controlled analysis in an 318 
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online repository such as GitHub, GitLab, or Bitbucket provides critical insurance as you iteratively 319 

modify and develop your workflow. 320 

 321 

Figure 6: Version Control Version control systems (e.g. Git, Mercurial) work by storing incremental 322 

differences in files from one saved version (“commit”) to the next. To visualize the differences between 323 

each version, text editors such as Atom and online services such as GitHub, GitLab and Bitbucket use red 324 

highlighting to denote deletions, and green highlighting to denote additions. In this trivial example, a 325 

typo in version 1 (in red) was corrected in version 2 (in green). These systems are extremely useful for 326 

code and manuscript development, as it is possible to return to the snapshot of any saved version. This 327 

means that version control systems save you from accidental deletions, preserve code you thought you no 328 

longer needed and preserve a record of project changes over time. 329 

When combined with online backups, version control systems also facilitate code and data availability 330 

and reproducibility for publication. For example, to preserve the version of code that produced published 331 

results, you can create a “release”: a snapshot of the current code and files in a GitHub repository. You 332 

can then generate a digital object identifier (DOI) for that release using a permanent documentation 333 

service such as Zenodo ([45]) and make it available to reviewers and beyond (see “sharing” section, 334 

below). 335 

Share your workflow and analysis code 336 

Sharing your workflow code with collaborators, peer reviewers, and scientists seeking to use a similar 337 

method can foster discussion and review of your analysis. Sticking to a clear documentation strategy, 338 

using a version control system, and packaging your code in notebooks or as a workflow prepare them to 339 

be easily shared with others. To go one step further, you can package your code with tools like Binder, 340 

ReproZip, or Whole Tale, or make interactive visualizations with tools like Shiny apps or Plotly. These 341 
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approaches let others run the code on cloud computers in environments identical to those in which the 342 

original computation was performed (Figure 4, Figure 7) [43,46,47]. These tools substantially reduce 343 

overhead associated with interacting with code and data, and in doing so, make it fast and easy to rerun 344 

portions of the analysis, check accuracy, or even tweak the analysis to produce new results. If you also 345 

share your code and workflows publicly, you will also help contribute to the growing resources for open 346 

workflow-enabled biological research. 347 

 348 

Figure 7: Interactive visualizations facilitate sharing and repeatability. A. Interactive visualization 349 

dashboard in the Pavian Shiny app for metagenomic analysis [48,49]. Shiny allows you to build 350 

interactive web pages using R code. Data is manipulated by R code in real-time in a web page, producing 351 

analysis and visualizations of a data set. Shiny apps can contain user-specifiable parameters, allowing a 352 

user to control visualizations or analyses. As seen above, sample “PT1” is selected, and taxonomic ranks 353 

class and order are excluded. Shiny apps allow collaborators who may or may not know R to modify R 354 

visualizations to fit their interests. B. Plotly heatmap of transcriptional profiling in human brain samples 355 

[50]. Hovering over a cell in the heatmap displays the sample names from the x and y axis, as well as the 356 

intensity value. Plotting tools like plotly and vega-lite produce single interactive plots that can be shared 357 

with collaborators or integrated into websites [51,52]. Interactive visualizations are also helpful in 358 

exploratory data analysis. 359 

Getting started developing workflows 360 

In our experience, the best way to have your workflow system work for you is to include as much of your 361 

analysis as possible within the automated workflow framework, use self-documenting names, include 362 

analysis visualizations, and keep rigorous documentation alongside your workflow that enables you to 363 

understand each decision and entirely reproduce any manual steps. Some of the tools discussed above will 364 
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inevitably change over time, but these principles apply broadly and will help you design clear, well-365 

documented, and reproducible analyses. Ultimately, you will need to experiment with strategies that work 366 

for you – what is most important is to develop a clear set of strategies and implement them tenaciously. 367 

Below, we provide a few practical strategies to try as you begin developing your own workflows. 368 

Start with working code When building a workflow for the first time, creating an initial workflow based 369 

on a subset of your sample data can help verify that the workflow, tools, and command line syntax 370 

function at a basic level. This functioning example code then provides a reliable workflow framework 371 

free of syntax errors which you can customize for your data without the overhead of generating correct 372 

workflow syntax from scratch. Table 1 provides links to official repositories containing tutorials and 373 

example biological analysis workflows, and workflow tutorials and code sharing websites like GitHub, 374 

GitLab, and Bitbucket have many publicly available workflows for other analyses. If a workflow is 375 

available through Binder, you can test and experiment with workflow modification on Binder’s cloud 376 

system without needing to install a workflow manager or software management tool on your local 377 

compute system [43]. 378 

Test with subsampled data While a workflow may run on test data, this is not a guarantee it will run on 379 

all data. After verifying your chosen example workflow is functional, try running it with your own data or 380 

some public data related to your species or condition of interest. If your analysis allows, trying the 381 

workflow on a small subset of the data first can save time, energy, and computational resources. For 382 

example, if working with FASTQ data, you can subsample the first million lines of a file (first 250k 383 

reads) by running: 384 

head -n 1000000 FASTQ_FILE.fq > test_fastq.fq 385 

While there are many more sophisticated ways to subsample reads, this technique should be sufficient for 386 

testing each step of a most workflows prior to running your full dataset. In specific cases, such as 387 

eukaryotic genome assembly, you may need to be more intentional with how you subsample reads. 388 
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Document your process Document your changes, explorations, and errors as you develop. We 389 

recommend using the Markdown language so your documentation is in plain text to facilitate version 390 

control, but can still include helpful visual headings, code formatting, and embedded images. Markdown 391 

editors with visual previewing, such as HackMD, can greatly facilitate notetaking, and Markdown 392 

documents are visually rendered properly within your online version control backups on services such as 393 

GitHub [53]. 394 

Develop your workflow From your working code, iteratively modify and add workflow steps to meet 395 

your data analysis needs. This strategy allows you to find and fix mistakes on small sections of the 396 

workflow. Periodically clean your output directory and rerun the entire workflow, to ensure all steps are 397 

fully interoperable (using small test data will improve the efficiency of this step!). If possible, using mock 398 

or control datasets can help you verify that the analysis you are building actually returns correct biological 399 

results. Tutorials and tool documentation are useful companions during development; as with any 400 

language, remembering workflow-specific syntax takes time and practice. 401 

Assess your results Evaluate your workflow results as you go. Consider what aspects (e.g. tool choice, 402 

program parameters) can be evaluated rigorously, and assess each step for expected behavior. Other 403 

aspects (e.g. filtering metadata, joining results across programs or analysis, software and workflow bugs) 404 

will be more difficult to evaluate. Wherever possible, set up positive and negative controls to ensure your 405 

analysis is performing the desired analysis properly. If you’re certain an analysis is executing as designed, 406 

tracking down unusual results may reveal interesting biological differences. 407 

Back up early and often As you write new code, back up your changes in an online repository such as 408 

GitHub, GitLab, or Bitbucket. These services support both drag-and-drop and command line interaction. 409 

Data backup will be discussed in the next section, Data and resource management for workflow-enabled 410 

biology. 411 
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Scale up your workflow Bioinformatic tools vary in the resources they require: some analysis steps are 412 

compute-intensive, other steps are memory intensive, and still others will have large intermediate storage 413 

needs. If using high-performance computing system or the cloud, you will need to request resources for 414 

running your pipeline, often provided as a simultaneous execution limit or purchased by your research 415 

group on a cost-per-compute basis. Workflow systems provide built-in tools to monitor resource usage for 416 

each step. Running a complete workflow on a single sample with resource monitoring enabled generates 417 

an estimate of computational resources needed for each step. These estimates can be used to set 418 

appropriate resource limits for each step when executing the workflow on your remaining samples. 419 

Strategies for resource management will be addressed in the next section, Data and resource management 420 

for workflow-enabled biology. 421 

Find a community and ask for help when you need it Local and online users groups are helpful 422 

communities when learning a workflow language. When you are first learning, help from more advanced 423 

users can save you hours of frustration. After you’ve progressed, providing that same help to new users 424 

can help you cement the syntax in your mind and tackle more advanced uses. Data-centric workflow 425 

systems have been enthusiastically adopted by the open science community, and as a consequence, there 426 

is a critical mass of tutorials and open access code, as well as code discussion on forums and via social 427 

media, particularly Twitter. Post in the relevant workflow forums when you have hit a stopping point you 428 

are unable to work through. Be respectful of people’s time and energy and be sure to include appropriate 429 

details important to your problem (see Strategic troubleshooting section). 430 

Data and resource management for workflow-enabled 431 

biology 432 

Advancements in sequencing technologies have greatly increased the volume of data available for 433 

biological query [54]. Workflow systems, by virtue of automating many of the time-intensive project 434 
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management steps traditionally required for data-intensive biology, can increase our capacity for data 435 

analysis. However, conducting biological analyses at this scale requires a coordinated approach to data 436 

and computational resource management. Below, we provide recommendations for data acquisition, 437 

management, and quality control that have become especially important as the volume of data has 438 

increased. Finally, we discuss securing and managing appropriate computational resources for the scale of 439 

your project. 440 

Managing large-scale datasets 441 

Experimental design, finding or generating data, and quality control are quintessential parts of data 442 

intensive biology. There is no substitute for taking the time to properly design your analysis, identify 443 

appropriate data, and conduct sanity checks on your files. While these tasks are not automatable, many 444 

tools and databases can aid in these processes. 445 

Look for appropriate publicly-available data 446 

With vast amounts of sequencing data already available in public repositories, it is often possible to begin 447 

investigating your research question by seeking out publicly available data. In some cases, these data will 448 

be sufficient to conduct your entire analysis. In others cases, particularly for biologists conducting novel 449 

experiments, these data can inform decisions about sequencing type, depth, and replication, and can help 450 

uncover potential pitfalls before they cost valuable time and resources. 451 

Most journals now require data for all manuscripts to be made accessible, either at publication or after a 452 

short moratorium. Further, the FAIR (findable, accessible, interoperable, reusable) data movement has 453 

improved the data sharing ecosystem for data-intensive biology [55,56,57,58,59,60,60,61]. You can find 454 

relevant sequencing data either by starting from the “data accessibility” sections of papers relevant to 455 

your research or by directly searching for your organism, environment, or treatment of choice in public 456 

data portals and repositories. The International Nucleotide Sequence Database Collaboration (INSDC), 457 
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which includes the Sequence Read Archive (SRA), European Nucleotide Archive (ENA), and DataBank 458 

of Japan (DDBJ) is the largest repository for raw sequencing data, but no longer accepts sequencing data 459 

from large consortia projects [62]. These data are instead hosted in consortia-specific databases, which 460 

may require some domain-specific knowledge for identifying relevant datasets and have unique download 461 

and authentication protocols. For example, raw data from the Tara Oceans expedition is hosted by the 462 

Tara Ocean Foundation [63]. Additional curated databases focus on processed data instead, such as gene 463 

expression in the Gene Expression Omnibus (GEO) [64]. Organism-specific databases such as 464 

Wormbase (Caenorhabditis elegans) specialize on curating and integrating sequencing and other data 465 

associated with a model organism [65]. Finally, rather than focusing on certain data types or organisms, 466 

some repositories are designed to hold any data and metadata associated with a specific project or 467 

manuscript (e.g. Open Science Framework, Dryad, Zenodo [66]). 468 

Consider analysis when generating your own data 469 

If generating your own data, proper experimental design and planning are essential. For cost-intensive 470 

sequencing data, there are a range of decisions about experimental design and sequencing (including 471 

sequencing type, sequencing depth per sample, and biological replication) that impact your ability to 472 

properly address your research question. Conducting discussions with experienced bioinformaticians and 473 

statisticians, prior to beginning your experiments if possible, is the best way to ensure you will have 474 

sufficient statistical power to detect effects. These considerations will be different for different types of 475 

sequence analysis. To aid in early project planning, we have curated a series of domain-specific 476 

references that may be useful as you go about designing your experiment (see Table 2). Given the 477 

resources invested in collecting samples for sequencing, it’s important to build in a buffer to preserve 478 

your experimental design in the face of unexpected laboratory or technical issues. Once generated, it is 479 

always a good idea to have multiple independent backups of raw sequencing data, as it typically cannot be 480 

easily regenerated if lost to computer failure or other unforeseeable events. 481 
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Table 2: References for experimental design and considerations for common sequencing chemistries.  482 

Sequencing type Resources 

RNA-sequencing [30,67,68] 

Metagenomic sequencing [31,69,70] 

Amplicon sequencing [71,72,73] 

Microbial isolate sequencing [74] 

Eukaryotic genome sequencing [75,76,77,78] 

Whole-genome resequencing [79] 

RAD-sequencing [80,80,81,82,83,84] 

single cell RNA-seq [85,86] 

As your experiment progresses, keep track of as much information as possible: dates and times of sample 483 

collection, storage, and extraction, sample names, aberrations that occurred during collection, kit lot used 484 

for extraction, and any other sample and sequencing measurements you might be able to obtain 485 

(temperature, location, metabolite concentration, name of collector, well number, plate number, machine 486 

your data was sequenced, on etc). This metadata allows you to keep track of your samples, to control for 487 

batch effects that may arise from unintended batching during sampling or experimental procedures and 488 

makes the data you collect reusable for future applications and analysis by yourself and others. Wherever 489 

possible, follow the standard guidelines for formatting metadata for scientific computing to limit 490 

downstream processing and simplify analyses requiring these metadata (see: [10]). We have focused here 491 

on sequencing data; for data management over long-term ecological studies, we recommend [87]. 492 
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Getting started with sequencing data 493 

Protect valuable data 494 

Aside from the code itself, raw data are the most important files associated with a workflow, as they 495 

cannot be regenerated if accidentally altered or deleted. Keeping a read-only copy of raw data alongside a 496 

workflow as well multiple backups protects your data from accidents and computer failure. This also 497 

removes the imperative of storing intermediate files as these can be easily regenerated by the workflow. 498 

When sharing or storing files and results, data version control can keep track of differences in files such 499 

as changes from tool parameters or versions. The version control tools discussed in the Workflow-based 500 

project management section are primarily designed to handle small files, but repositories such as the Open 501 

Science Framework, Figshare, Zenodo, and Dryad can be used for storing larger files and datasets. 502 

The Open Science Framework (OSF; [66]) is a free service that provides powerful collaboration and 503 

sharing tools, provides built-in version control, integrates with other storage and version control 504 

repositories, guarantees data preservation, and enables you to keep projects private until they are ready to 505 

share. Like other services geared towards data sharing, OSF also enables generation of a digital object 506 

identifier (doi) for each project. While other services such as Git Large File Storage (LFS), Figshare [88], 507 

Zenodo [45], and the Dryad Digital Repository [89] each provide important services for sharing and 508 

version control, OSF provides the most comprehensive set of free tools for managing data storage and 509 

backup. As free tools often limit the size of files that can be stored, a number of cloud backup and storage 510 

services are also available for purchase or via university contract, including Google Drive, Box, Dropbox, 511 

Amazon Web Services, and Backblaze. Full computer backups can be conducted to these storage 512 

locations with tools like rclone [90]. 513 



 25 

Ensure data integrity during transfers 514 

If you’re working with publicly-available data, you may be able to work on a compute system where the 515 

data are already available, circumventing time and effort required for downloading and moving the data. 516 

Databases such as the Sequence Read Archive (SRA) are now available on commercial cloud computing 517 

systems, and open source projects such as Galaxy enable working with SRA sequence files directly from 518 

a web browser [12,91]. Ongoing projects such as the NIH Common Fund Data Ecosystem aim to develop 519 

a data portal to make NIH Common Fund data, including biomedical sequencing data, more findable, 520 

accessible, interoperable, and reusable (FAIR). 521 

In most cases, you’ll still need to transfer some data - either downloading raw data or transferring 522 

important intermediate and results files for backup and sharing (or both). Transferring compressed files 523 

(gzip, bzip2, BAM/CRAM, etc.) can improve transfer speed and save space, and checksums can be used 524 

to to ensure file integrity after transfer (see Figure 8). 525 

 526 

Figure 8: Use Checksums to ensure file integrity Checksum programs (e.g. md5, sha256) encode file size 527 

and content in a single value known as a “checksum”. For any given file, this value will be identical 528 

across platforms when calculated using the same checksum program. When transferring files, calculate 529 

the value of the checksum prior to transfer, and then again after transfer. If the value is not identical, 530 

there was an error introduced during transfer (e.g. file truncation, etc). Checksums are often provided 531 

alongside publicly available files, so that you can verify proper download. Tools like rsync and rclone 532 

that automate file transfers use checksums internally to verify that files were transferred properly, and 533 

some GUI file transfer tools (e.g. Cyberduck) can assess checksums when they are provided [90]. If you 534 

generated your own data and receieved sequencing files from a sequencing center, be certain you also 535 

receive a checksum for each of your files to ensure they download properly. 536 
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Perform quality control at every step 537 

The quality of your input data has a major impact on the quality of the output results, no matter whether 538 

your workflow analyzes six samples or six hundred. Assessing data at every analysis step can reveal 539 

problems and errors early, before they waste valuable time and resources. Using quality control tools that 540 

provide metrics and visualizations can help you assess your datasets, particularly as the size of your input 541 

data scales up. However, data from different species or sequencing types can produce anomalous quality 542 

control results. You are ultimately the single most effective quality control tool that you have, so it is 543 

important to critically assess each metric to determine those that are relevant for your particular data. 544 

Look at your files Quality control can be as simple as looking at the first few and last few lines of input 545 

and output data files, or checking the size of those files (see Table 3). To develop an intuition for what 546 

proper inputs and outputs look like for a given tool, it is often helpful to first run the test example or data 547 

that is packaged with the software. Comparing these input and output file formats to your own data can 548 

help identify and address inconsistencies. 549 

Table 3: Some bash commands are useful to quickly explore the contents of a file. By using these 550 

commands, the user can detect common formatting problems or other abnormalities.  551 

command function example 

ls -lh list files with information in a human-readable format ls -lh *fastq.gz 

head print the first 6 lines of a file to standard out head samples.csv 

tail print the last 6 lines of a file to standard out tail samples.csv 

less show the contents of a file in a scrollable screen less samples.csv 

zless show the contents of a gzipped file in a scrollable screen zless sample1.fastq.gz 

wc -l count the number of lines in a file wc -l ecoli.fasta 

cat print a file to standard out cat samples.csv 
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grep find matching text and print the line to standard out grep “>” ecoli.fasta 

cut cut columns from a table cut -d“,” -f1 samples.csv 

Visualize your data Visualization is another powerful way to pick out unusual or unexpected patterns. 552 

Although large abnormalities may be clear from looking at files, others may be small and difficult to find. 553 

Visualizing raw sequencing data with FastQC (Figure 9A) and processed sequencing data with tools like 554 

the Integrative Genome Viewer and plotting tabular results files using python or R can make aberrant or 555 

inconsistent results easier to track down [93,94]. 556 

 557 

Figure 9: Visualizations produced by MultiQC. MultiQC finds and automatically parses log files from 558 

other tools and generates a combined report and parsed data tables that include all samples. MultiQC 559 

currently supports 88 tools. A. MultiQC summary of FastQC Per Sequence GC Content for 1905 560 

metagenome samples. FastQC provides quality control measurements and visualizations for raw 561 

sequencing data from a single sample, and is a near-universal first step in sequencing data analysis 562 

because of the insights it provides [93,94]. FastQC measures and summarizes 10 quality metrics and 563 

provides recommendations for whether an individual sample is within an acceptable quality range. 564 

Not all metrics readily apply to all sequencing data types. For example, while multiple GC peaks might 565 

be concerning in whole genome sequencing of a bacterial isolate, we would expect a non-normal 566 

distribution for some metagenome samples that contain organisms with diverse GC content. Samples like 567 

this can be seen in red in this figure. B. MultiQC summary of Salmon quant reads mapped per sample for 568 

RNA-seq samples [95]. In this figure, we see that MultiQC summarizes the number of reads mapped and 569 

percent of reads mapped, two values that are reported in the Salmon log files. 570 

Pay attention to warnings and log files Many tools generate log files or messages while running. These 571 

files contain information about the quantity, quality, and results from the run, or error messages about 572 

why a run failed. Inspecting these files can be helpful to make sure tools ran properly and consistently, or 573 
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to debug failed runs. Parsing and visualizing log files with a tool like MultiQC can improve 574 

interpretability of program-specific log files (Figure 9 [96]). 575 

Look for common biases in sequencing data Biases in sequencing data originate from experimental 576 

design, methodology, sequencing chemistry, or workflows, and are helpful to target specifically with 577 

quality control measures. The exact biases in a specific data set or workflow will vary greatly between 578 

experiments so it is important to understand the sequencing method you have chosen and incorporate 579 

appropriate filtration steps into your workflow. For example, PCR duplicates can cause problems in 580 

libraries that underwent an amplification step, and often need to be removed prior to downstream analysis 581 

[97,98,99,100,101]. 582 

Check for contamination Contamination can arise during sample collection, nucleotide extraction, 583 

library preparation, or through sequencing spike-ins like PhiX, and could change data interpretation if not 584 

removed [102,103,104]. Libraries sequenced with high concentrations of free adapters or with low 585 

concentration samples may have increased barcode hopping, leading to contamination between samples 586 

[105]. 587 

Consider the costs and benefits of stringent quality control for your data Good quality data is 588 

essential for good downstream analysis. However, stringent quality control can sometimes do more harm 589 

than good. For example, depending on sequencing depth, stringent quality trimming of RNA-sequencing 590 

data may reduce isoform discovery [106]. To determine what issues are most likely to plague your 591 

specific data set, it can be helpful to find recent publications using a similar experimental design, or to 592 

speak with experts at a sequencing core. 593 

Because sequencing data and applications are so diverse, there is no one-size-fits-all solution for quality 594 

control. It is important to think critically about the patterns you expect to see given your data and your 595 

biological problem, and consult with technical experts whenever possible. 596 
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Securing and managing appropriate computational resources 597 

Sequence analysis requires access to computing systems with adequate storage and analysis power for 598 

your data. For some smaller-scale datasets, local desktop or even laptop systems can be sufficient, 599 

especially if using tools that implement data-reduction strategies such as minhashing [107]. However, 600 

larger projects require additional computing power, or may be restricted to certain operating systems 601 

(e.g. linux). For these projects, solutions range from research-focused high performance computing 602 

systems to research-integrated commercial analysis platforms. Both research-only and and commercial 603 

clusters provide avenues for research and educational proposals to enable access to their computing 604 

resources (see Table 4). In preparing for data analysis, be sure to allocate sufficient computational 605 

resources and funding for storage and analysis, including large intermediate files and resources required 606 

for personnel training. Note that workflow systems can greatly facilitate faithful execution of your 607 

analysis across the range of computational resources available to you, including distribution across cloud 608 

computing systems. 609 

Table 4: Computing Resources Bioinformatic projects often require additional computing resources. If a 610 

local or university-run high-performance computing cluster is not available, computing resources are 611 

available via a number of grant-based or commercial providers.  612 

Provider Access Model Restrictions 

Amazon Web Services Paid 
 

Bionimbus Protected Data Cloud Research allocation users with eRA commons account 

Cyverse Atmosphere Free with limits storage and compute hours 

EGI federated cloud Access by contact European partner countries 

Galaxy Free with storage limits data storage limits 
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Google Cloud Platform Paid 
 

Google Colab Free computational notebooks, no resource guarantees 

Microsoft Azure Paid 
 

NSF XSEDE Research allocation USA researchers or collaborators 

Open Science Data Cloud Research allocation 
 

Wasabi Paid data storage solution only 

Getting started with resource management 613 

As the scale of data increases, the resources required for analysis can balloon. Bioinformatic workflows 614 

can be long-running, require high-memory systems, or involve intensive file manipulation. Some of the 615 

strategies below may help you manage computational resources for your project. 616 

Apply for research units if eligible There are a number of cloud computing services that offer grants 617 

providing computing resources to data-intensive researchers (Table 4). In some cases, the resources 618 

provided may be sufficient to cover your entire analysis. 619 

Develop on a local computer when possible Since workflows transfer easily across systems, it can be 620 

useful to develop individual analysis steps on a local laptop. If the analysis tool will run on your local 621 

system, test the step with subsampled data, such as that created in the Getting started developing 622 

workflows section. Once working, the new workflow component can be run at scale on a larger 623 

computing system. Workflow system tool resource usage reporting can help determine the increased 624 

resources needed to execute the workflow on larger systems. For researchers without access to free or 625 

granted computing resources, this strategy can save significant cost. 626 
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Gain quick insights using sketching algorithms Understanding the basic structure of data, the 627 

relationship between samples, and the approximate composition of each sample can very helpful at the 628 

beginning of data analysis, and can often drive analysis decisions in different directions than those 629 

originally intended. Although most bioinformatics workflows generate these types of insights, there are a 630 

few tools that do so rapidly, allowing the user to generate quick hypotheses that can be further tested by 631 

more extensive, fine-grained analyses. Sketching algorithms work with compressed approximate 632 

representations of sequencing data and thereby reduce runtimes and computational resources. These 633 

approximate representations retain enough information about the original sequence to recapitulate the 634 

main findings from many exact but computationally intensive workflows. Most sketching algorithms 635 

estimate sequence similarity in some way, allowing you to gain insights from these comparisons. For 636 

example, sketching algorithms can be used to estimate all-by-all sample similarity which can be 637 

visualized as a Principle Component Analysis or a multidimensional scaling plot, or can be used to build 638 

a phylogenetic tree with accurate topology. Sketching algorithms also dramatically reduce the runtime for 639 

comparisons against databases (e.g. all of GenBank), allowing users to quickly compare their data against 640 

large public databases. 641 

Rowe 2019 [108] reviewed programs and genomic use cases for sketching algorithms, and provided a 642 

series of tutorial workbooks (e.g. Sample QC notebook: [109]). 643 

Use the right tools for your question RNA-seq analysis approaches like differential expression or 644 

transcript clustering rely on transcript or gene counts. Many tools can be used to generate these counts by 645 

quantifying the number of reads that overlap with each transcript or gene. For example, tools like STAR 646 

and HISAT2 produce alignments that can be post-processed to generate per-transcript read counts 647 

[110,111]. However, these tools generate information-rich output, specifying per-base alignments for 648 

each read. If you are only interested in read quantification, quasi-mapping tools provide the desired 649 

results while reducing the time and resources needed to generate and store read count information 650 

[112,113]. 651 
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Seek help when you need it In some cases, you may find that your accessible computing system is ill-652 

equipped to handle the type or scope of your analysis. Depending on the system, staff members may be 653 

able to help direct you to properly scale your workflow to available resources, or guide you in tailoring 654 

computational unit allocations or purhcases to match your needs. 655 

Strategies for troubleshooting 656 

Workflows, and research software in general, invariably require troubleshooting and iteration. When first 657 

starting with a workflow system, it can be difficult to interpret code and usage errors from unfamiliar 658 

tools or languages [2]. Further, the iterative development process of research software means 659 

functionality may change, new features may be added, or documentation may be out of date [114]. The 660 

challenges of learning and interacting with research software require time and patience [4]. 661 

One of the largest barriers to surmounting these challenges is learning how, when, and where to ask for 662 

help. Below we outline a strategy for troubleshooting that can help build your own knowledge while 663 

respecting both your own time and that of research software developers and the larger bioinformatic 664 

community. In the “where to seek help” section, we also recommend locations for asking general 665 

questions around data-intensive analysis, including discussion of tool choice, parameter selection, and 666 

other analysis strategies. Beyond these tips, workshops and materials from training organizations such as 667 

the Carpentries, R-Ladies, RStudio can arm you with the tools you need to start troubleshooting and 668 

jump-start software and data literacy in your community [115]. Getting involved with these workshops 669 

and communities not only provides educational benefits but also networking and career-building 670 

opportunities. 671 
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How to help yourself: Try to pinpoint your issue or error 672 

Software errors can be the result of syntax errors, dependency issues, operating system conflicts, bugs in 673 

the software, problems with the input data, and many other issues. Running the software on the provided 674 

test data can help narrow the scope of error sources: if the test data successfully runs, the command is 675 

likely free of syntax errors, the source code is functioning, and the tool is likely interacting appropriately 676 

with dependencies and the operating system. If the test data runs but the tool still produces an error when 677 

run with your data and parameters, the error message can be helpful in discovering the cause of the error. 678 

In many cases, the error you’ve encountered has been encountered many times before, and searching for 679 

the error online can turn up a working solution. If there is a software issue tracker for the software (e.g. on 680 

the GitHub, GitLab, or Bitbucket repository), or a Gitter, Slack, or Google Groups page, performing a 681 

targeted search with the error message may provide additional context or a solution for the error. If 682 

targeted searches do not return a results, Googling the error message with the program name is a good 683 

next step. Searching with several variants and iteratively adding information such as the type of input 684 

data, the name of the coding language or computational platform, or other relevant information, can 685 

improve the likelihood that a there will be a match. There are a vast array of online resources for 686 

bioinformatic help ranging from question sites such as Stack Overflow and BioStars, to personal or 687 

academic blogs and even tutorials and lessons written by experts in the field [116]. This increases the 688 

discoverability of error messages and their solutions. 689 

Sometimes, programs fail without outputting an error message. In cases like these, the software’s help 690 

(usually accessible on the command line via tool-name --help) and official documentation may provide 691 

clues or additional example use cases that may be helpful in resolving an error. Syntax errors are 692 

extremely common, and typos as small as a single, misplaced character or amount of whitespace can 693 

affect the code. If a command matches the documentation and appears syntactically correct, the software 694 

version (often accessible at the command line tool-name --version) may be causing the error. 695 
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Best practices for software development follow “semantic versioning” principles, which aim to keep the 696 

arguments and functionality the same for all minor releases of the program (e.g. 1.1 to 1.2) and only 697 

change functions with major releases (e.g. 1.x to 2.0). 698 

How to seek help: include the right details with your question 699 

When searching for the error message and reading the documentation do not resolve an error, it is usually 700 

appropriate to for seek help either from the software developers or from a bioinformatics community. 701 

When asking for help, it’s essential to provide the right details so that other users and developers can 702 

understand the exact conditions that produced the error. At minimum, include the name and version of the 703 

program, the method used to install it, whether or not the test data ran, the exact code that produced the 704 

error, the error message, and the full output text from the run (if any is produced). The type and version of 705 

the operating system you are using is also helpful to include. Sometimes, this is enough information for 706 

others to spot the error. However, if it appears that there may bug in the underlying code, specifying or 707 

providing the minimum amount of data required to reproduce the error (e.g. reproducible example 708 

[117,118]) enables other to reproduce and potentially solve the error at hand. Putting the effort into 709 

gathering this information both increases your own understanding of the problem and makes it easier and 710 

faster for others to help solve your issue. Furthermore, it signals respect for the time that these developers 711 

and community members dedicate to helping troubleshoot and solve user issues. 712 

Where to seek help: online and local communities of practice 713 

Online communities and forums are a rich source of archived bioinformatics errors with many helpful 714 

community members. For errors with specific programs, often the best place to post is the developers’ 715 

preferred location for answering questions and solving errors related to their program. For open source 716 

programs on GitHub, GitLab, or Bitbucket, this is often the “Issues” tab within the software repository, 717 

but it could alternatively be a Google groups list, gitter page, or other specified forum. Usually, the 718 
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documentation indicates the best location questions. If question is more general, such as asking about 719 

program choice or workflows, forums relevant to your field such as Stack Overflow, BioStars, or 720 

SEQanswers are good choices, as posts here are often seen by a large community of researchers. Before 721 

posting, search through related topics to double check the question has not already been answered. As 722 

more research software development and troubleshooting is happening openly in online repositories, it is 723 

becoming more important than ever to follow a code of conduct that promotes open and harassment-free 724 

discussion environment [119]. Look for codes of conduct in the online forums you participate in, and 725 

make sure you do your part to help ensure a welcoming community for participants of all backgrounds 726 

and computational competencies. 727 

While there is lots of help available online, there is no substitute for local communities. Local 728 

communities may come in the form of a tech meetup, a users group, a hacky hour, or an informal meetup 729 

of researchers using similar tools. While this may seem like just a local version of Stack Overflow, the 730 

local, member-only nature can help create a safe and collaborative online space for troubleshooting 731 

problems often encountered by your local bioinformatics community. The benefit to beginners is clear: 732 

learning the best way to post questions and the important parts of errors, while getting questions answered 733 

so they can move forward in their research. Intermediate users may actually find these communities most 734 

useful, as they can also accelerate their own troubleshooting skills by helping others solve issues that they 735 

have already struggled through. While it can be helpful to have some experts available to help answer 736 

questions or to know when to escalate to Stack Overflow or other communities, a collaborative 737 

community of practice with members at all experience levels can help all its members move their science 738 

forward faster. 739 

If such a community does not yet exist in your area, building this sort of community (discussed in detail 740 

in [120]), can be as simple as hosting a seminar series or starting meetup sessions for data analysis co-741 

working. In our experience, it can also be useful to set up a local online forum (e.g. discourse) for group 742 

troubleshooting. 743 
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Conclusion 744 

Bioinformatics-focused workflow systems have reshaped data-intensive biology, reducing execution 745 

hurdles and empowering biologists to conduct reproducible analyses at the massive scale of data now 746 

available. Shared, interoperable research code is enabling biologists to spend less time rewriting common 747 

analysis steps, and more time on interesting biological questions. We believe these workflow systems will 748 

become increasingly important as dataset size and complexity continue to grow. This manuscript provides 749 

a directed set of project, data, and resource management strategies for adopting workflow systems to 750 

facilitate and expedite reproducible biological research. While the included data management strategies 751 

are tailored to our own experiences in high-throughput sequencing analysis, we hope that these principles 752 

enable biologists both within and beyond our field to reap the benefits of workflow-enabled data-intensive 753 

biology. 754 
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research - including data and analysis workflows - should be Findable, Accessible, Interoperable, and              
Reusable (FAIR). These ideals are readily achievable for computational analyses, but implementing them             
in practice has proven difficult, particularly for biologists with limited computational training. Data-centric             
workflow systems offer a solution by internally managing computational resources, software, and            
conditional execution of analysis steps using a declarative specification of the workflow. These systems              
are reshaping the landscape of biological data analysis and empowering researchers to conduct             
reproducible analyses at scale. Online communities for sharing reusable workflow code have proliferated,             
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There is broad interest in workflows for biological analyses, recently profiled in Nature Methods (“When               
Computational Pipelines go ‘clank’ ”) and Nature Toolbox (“Workflow systems turn raw data into              
scientific knowledge”; see citations at end of letter), but few practical resources exist. In this manuscript,                
we build upon strong "best" and "good-enough" practice recommendations for biological computing            
(articles below) to provide what we believe to be the first detailed guidance for employing actual                
workflow systems in data-intensive biology research .  
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